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A two-layer configuration of thermohaline convection is studied, with the principal 
aim of explaining the observed independence of the buoyancy-flux ratio on the 
stability parameter when the latter is large. Temperature is destabilizing and salinity 
is stabilizing, so diffusive interfaces separate the convecting layers. The convection 
is treated in the single-mode approximation, with a prescribed horizontal planform 
and wavenumber. Surveys of numerical solutions are presented for a selection of 
Rayleigh numbers R, stability parameters h and horizontal wavenumbers a. The 
solutions yield a buoyancy flux ratio x that is insensitive to A ,  in accord with 
laboratory experiments. However x increases with increasing R, in contradiction to 
laboratory observations. 

1. Introduction 
Thermohaline convection is distinguished from BBnard convection by its occurrence 
even when the overall density increases with depth, provided temperature and 
salinity make opposing contributions to the density. There is a striking tendency for 
the motion to build stepped profiles in both heat and salt. Such structures have been 
observed in the laboratory, and there is strong evidence that they exist in lakes and 
oceans. They may be important also in the cores of evolved stars. 

The overall structure of the flow depends upon whether temperature or salinity 
destabilizes (the other stabilizes). With temperature destabilizing, the flow in 
laboratory experiments develops into a series of horizontal layers of convection, each 
separated from its neighbour by a relatively sharp interface within which temperature 
and salinity vary rapidly. This situation is frequently called ‘diffusive layering ’, since 
the overall transport of heat and salt is controlled by diffusion through the interfaces. 

The linear and finite-amplitude stability theory needed to  explain the onset of some 
forms of thermohaline convection now appears to  be understood (Stern 1960; Baines 
& Gill 1969; Veronis 1965, 1968; Huppert & Moore 1976), and it is clear that 
instability can arise because of the differing molecular diffusivities of heat and salt. 
However, this theory is of little help once vigorous motions have been established, 
and our impressions then are derived mainly from simple laboratory experiments. 

This paper is concerned with trying to provide a nonlinear theory to interpret the 
experiments on diffusive layering. The configuration that we model is much like that 
of the experiments by Turner (1965, 1968), with convection occurring in two 
horizontal layers separated by a diffusive interface. The lower layer is warmer, saltier 
and denser than the upper layer. 
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2. Experiments and explanations 
Most of the two-layer experiments have been modelled on the initial studies by 

Turner (1965). These include the work of Broughton (1972), Crapper (1973, 1975), 
Marmorino (1974) and Marmorino & Caldwell (1976). A good review of thermohaline 
convection experiments is provided by Turner (1973, chap. 8). Initially two uniform 
layers of water fill the apparat,us, the lower being the more saline. Heat is supplied 
through the bottom boundary which drives convection in both layers. Provided the 
heating rate is not too great, the convective motions do not traverse the boundary 
separating the layers, and a diffusive interface is maintained. The centres of the two 
layers of convection are separated in depth by d ; over this distance the temperature 
changes by AT and salinity by AS, though they do so mainly across the interface. 
Since the boundaries are impervious to salt, A S  decreases slowly with time. The 
interface is characterized by a stability parameter 

a, A S  A=- 
aAT ’ 

where a and a, are defined such that -aAT and a, A 8  are the density increments 
resulting from changes of AT and A 8  in temperature and salinity; A > 1 since the 
lower layer is always denser than the upper layer. 

Turner made measurements to see how the stability parameter h influknces the 
vertical fluxes F and F, of heat and salt through the interface. His most-striking result 
concerns the buoyancy-flux ratio 

a s  4 
X = , p ’  

which is also the ratio of the potential-energy changes due to  the transfer of salt and 
heat across the interface. Turner found that x was nearly constant when h 2 2, 
irrespective of heating rate, a t  a value xc of about 0.15. As h was decreased below 
2, x increased, and approached unity as h + 1. Since these were run-down experi- 
ments, a range in h could be sampled as AX and h decreased in time. 

Crapper (1973, 1975) repeated Turner’s experiments and, though he found some 
changes in the behaviour of x a t  the small-h turnoff, the insensitivity of x to h a t  
larger values persisted. Marmorino (1974) and Marmorino & Caldwell (1976) carried 
out similar experiments over a wider range of heat fluxes, achieving this by cooling 
their apparatus from above in addition to  heating from below. They too found that 
x was relatively insensitive to A ,  although xc did depend on heat flux. For their lowest 
heat flux (F z lop4 cal ernp2 s-l) xc was near 040, and i t  decreased steadily to 0.15 
as the heat flux approached that of Turner’s experiments ( F  z 5 x lop2). 

Just  what happens near h = 2 is uncertain. All the experimenters report that the 
interfaces tend to  sustain waves, and some report that  they migrate vertically. It 
appears that the interface begins to  break down when A 5 2, but little quantitative 
experimental information is available. 

Another important issue is the variation of the heat flux F as the stability 
parameter h changes. The double-layer experiments by Turner (1965) show that F 
decreases with increasing A ,  the heat transport a t  h = 7 being only about 10% of 
that a t  h = 2. Marmorino & Caldwell (1976) report that  F seems to be independent 
of h a t  large h ( A  2 10). Despite some differences in the measured values of F,  the 
experimenters agree that increasing the stabilizing salinity gradient decreases the 
heat flux substantially. This behaviour was found also in the experiments by Griffiths 
(1979a, b) on diffusive interfaces formed in the presence of several dissolved salts. 
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Diffusive layering seen in the laboratory has not been explained adequately by 
theory. Progress may be made with kinematical studies, assuming a particular form 
for the turbulent velocity field and trying to compute its effects on the density 
interface, in the manner of Linden (1973). But we prefer instead to  investigate 
dynamical models of convection, even if they are rather crude, in which the velocity, 
temperature and salinity are directly linked. We formulate such an approach in $3.  
After posing the problem, we begin by outlining a theoretical procedure that has been 
used in dealing with thermal convection, and then we display the equations that result 
from extending this method to  the thermohaline case. 

3. Treatment of the problem 
We consider thermohaline convection occurring in two adjacent horizontal layers 

separated by a diffusive interface. This configuration resembles the double-layer 
laboratory experiments originally performed by Turner (1965). I n  particular, we 
study motions that result in a region of fluid of overall depth 2d bounded by two 
horizontal planes on which suitable velocity, temperature and salinity boundary 
conditions are imposed. A fluid in Boussinesq approximation is considered, with the 
density p satisfying p = po[l -a(T-T,)+a,(X-S,)]. The lower boundary is 
maintained a t  constant temperature T = T, + AT and constant salinity S = So +AS, 
and the upper boundary at T = To- AT and S = So - AS. Here AT, AS > 0, and are 
chosen such that a, AS > aAT. 

The problem can be described in terms of the thermal Rayleigh numbers 

Note that K, is used in the definition of R,. We shall also require 

The stability parameter or density-anomaly ratio (2.1) can then be expressed as 

rR h = S  
R '  (3.3) 

Here g is the gravitational acceleration, v is the kinematic viscosity, and K and K, 

are the diffusivities of heat and salt. All these are assumed to be constant. We shall 
hereafter use a dimensionless formulation using d ,  d 2 / K ,  AT and AS as units of length, 
time, temperature and salinity. The diffusivity ratio r for this system is taken to be 
low2 and the Prandtl number B is 6.8. 

3.1. Modal equations 
We represent the flow by the modal approximation. The equations result from 
expanding the fluctuating velocity and temperature fields in a truncated set of 
planform functions of the horizontal coordinates. The severest truncation retains only 
one term and yields the single-mode equations. These contain a parameter C that 
characterizes the shape of the planform and a wavenumber a that  defines its scale. 
Both must be specified arbitrarily. Toomre, Gough & Spiegel (1977, hereinafter 11) 
have obtained numerical solutions of the single-mode equations at moderate values 
of the Rayleigh number R ;  asymptotic solutions a t  high R are presented by Gough, 
Spiegel & Toomre (1975a, hereinafter I).  It was found in I1 that, with a suitable choice 
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of the wavenumber a ,  the solutions can be made to  replicate the heat transport and 
yield mean-temperature profiles and amplitudes of motion not unlike those in the 
laboratory experiments. This gives us some encouragement to proceed to a study of 
thermohaline convection under the same approximation. 

As in I we first decompose the fluid temperature T and salinity S into mean and 
fluctuating parts : T = r+ 8 and S = s+ @, where the overbar denotes a horizontal 
average. The velocity u is written in the form 

(3.4) 

which satisfies the continuity equation and precludes a vertical component of 
vorticity. The temperature and salinity fluctuations take the forms 

8=@f,  @ = @ f .  (3.5) 

The amplitude functions W ,  0 and 0 depend on z and t alone, and the horizontal 

Here ( x ,  y, z )  are spatial Cartesian coordinates with z vertical, and t is time. These 
forms for U, 0 and @ are substituted into the equations of motion, which are 
subsequently horizontally averaged, or multiplied by f and then averaged, just as 
in I. The resulting equations, after elimination of pressure and horizontal velocity 
components, are the horizontal vorticity equation 

the fluctuating-thermal-energy equation 

the fluctuating-salinity equation 

the mean-thermal-energy equation 

(& - &)r= - %( a W O ) ,  

and the mean-salinity equation 

where 

(3.9) 

(3.10) 

(3.1 1 )  

Setting the self-interaction parameter C to  zero yields what, are commonly called the 
single-mode mean-field equations. Within a single-mode representation, rolls and 
rectangular planforms have no self-interaction (C = 0), but a hexagonal planform has 
C = z/i = 0.408. 
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When the solutions are steady, a /d t  = 0 and the mean equations (3.10) and (3.11) 
have the first integrals p+ wo = N ,  (3.12) 

y+ W@ = M pN, (3.13) 

where 

The constants of integration are the Nusselt number N and the salinity flux M ,  the 
latter being measured in units of K~ AS/d ; their ratio is p = M / N .  The buoyancy-flux 
ratio may thus be expressed as 

Note that only when C =# 0 do the steady equations contain the Prandtl number CT. 

3.2. Boundary conditions 

x = rhp. 

We assume that the boundaries are perfect thermal conductors and salinity 
reservoirs, with prescribed constant boundary temperatures and salinities : 

T = T = l ,  S = S = 1  ( z=O) , \  

T = T = - 1 ,  S = S = - l  ( z = 2 ) , )  
- 

which requires that 
e = o = o ,  (75=@=0 ( z = O , 2 ) .  

(3.14) 

(3.15) 

We have chosen the upper boundary to be at z = 2 because we are studying two layers. 
Usually we adopt the so-called ‘free ’ boundary conditions of convection theory, 
which presume that the horizontal viscous stresses and the z-component of velocity 
vanish, thus yielding the conditions 

= 0 (2  = 0 ,2 ) .  W = -  a2w 

a z 2  
(3.16) 

We have also computed solutions subject to the rigid condition u = 0 on the 
boundaries, which requires that (3.16) be replaced by 

W = - - = O  aw ( z = 0,2) .  az (3.17) 

Of course we could have chosen boundary conditions that mimic the experiments 
more directly. The choice (3.14)-(3.16) was made because with them the system can 
be regarded as part of a larger multilayer system. Indeed, even the steady two-layer 
state can be studied by considering just one of the convective layers (say the lower 
one). This is so because it is a property of the numerical solutions presented in 94 
that, at the centre of a steady diffusive interface, W ,  a2W/8z2,  0 and Q, all vanish. 
These are precisely our boundary conditions (3.15) and (3.16). A time-independent 
uniformly layered medium with diffusive interfaces, in modal approximation, is 
therefore equivalent to a stack of convective layers, each of which is confined by free 
boundaries. When C + 0 alternate layers are reflections of each other about the 
midplane of the diffusive layer that separates them. Therefore, in particular, they 
each have the same depth. When C = 0 the solutions in every layer are identical 
because each is symmetrical about its own midplane. Thus the values of R and h 
characterizing a single layer within a stack are just the ones defined here. We shall 
study this particular case by replacing the boundary conditions (3.15) and (3.16) a t  
z = 2 by identical ones imposed a t  z = 1 ,  and by requiring that = 0 and s = 0 at  
z = 1 in place of the upper boundary condition in (3.14). 
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3.3. Numerical procedure 

The governing equations have been solved numerically by finite differences using 
the methods discussed in appendix A of 11, typically with 300 grid points. Two 
independent programmes were used, one solving the time-dependent equations and 
the other solving the steady equations with M and N as eigenvalues. Both methods 
incorporated the first-derivative mesh-stretching scheme of Gough, Spiegel & Toomre 
(1975b). 

4. Properties of the numerical solutions 
Time-dependent numerical experiments were performed from a variety of initial 

conditions. I n  some we started with an isothermal state, a t  the temperature of the 
upper boundary, and a uniform stable salinity gradient. By perturbing this with 
low-amplitude fluctuations we were able to  model the formation and growth of 
convective layers near the lower plate, similar to those first observed in the 
experiments of Turner & Stommel (1964). In  other computations the initial mean 
fields were step-like, so as to model laboratory experiments started from a stepped 
structure that had been achieved by mechanical mixing. It was the latter class of 
experiments that interested us the most, since in these the diffusive interfaces were 
quasi-stationary and measurements of fluxes were possible. We have adopted 
boundary conditions that permit truly steady solutions, and when we obtained them 
from a time-dependent integration, we started most often from existing steady 
solutions with different R, A or a. Sometimes noise was added to test whether the 
final state to which the system evolves depends on initial conditions. All our solutions 
were obtained for values of R 3 1-25 x lo5. 

Most of our study concerns the steady solutions, and these we discuss in some detail 
below. For the double-layer systems that we have computed explicitly, such as those 
illustrated in figure 1 ,  i t  is convenient to introduce an effective stability parameter 
A, that  characterizes the central interface, defined by 

The flux ratio in the steady interface is, of course, the same as that for the entire 
system. 

We have distinguished two quite different types of interface, which we have called 
A and B. Interfaces of type A exist only when A, is small, and are characterized by 
a buoyancy-flux ratio x x &I,, irrespective of R, a ,  u and C. Their structure is quite 
simple and the 7-dependence reflects simply the ratio of the rates of diffusion of 
salinity and temperature. Interfaces of type B are more complicated, and exist a t  
larger values of A,. The associated values of x are lower than the type A formula would 
predict, and are relatively insensitive to A,. They too exist over a wide range of 
wavenumbers, for both rolls and hexagons, but x now does depend on R, a and C (see 
figures 3 and 4). 

The rest of this section is devoted to a more detailed discussion of the properties 
of the solutions, all of which have u = 6.8 and 7 = lop2. Our most-extensive surveys 
have C = 0. 

4.1. Description of double-layer hexagons 
Three steady solutions are illustrated in figure 1 .  The convection is three-dimensional, 
with the interaction parameter C = 0.408 characteristic of hexagonal planforms ; the 
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FIGURE 1 .  Amplitudes of vertical velocity W and fluctuations 0 and @ of temperature and salinity, 
measured in units of their maximum values W,, 0, and m0, and the corresponding mean temperature 
T and mean salinity g, plotted against the vertical coordinate z on uniform scale for three values 
of the stability parameter A. The solutions are for hexagons subject to free boundary conditions; 
R = 1.25 x LO5, (T = 6%,7 = and a = 4. The stability parameters, Nusselt numbers, buoyancy- 
flux ratios and scaling factors are as follows: ( a )  h = 4, N = 7.97, x = 0412, W, = 190.6, @, = 0 1  10, 
CD, = 0.118; ( b )  6, 5.07, 0292, 154.2, 0.090, 0105; (c) 14, 331, 0307, 111.2, 0068, 0028. 

sign of W in the solutions shown in figure 1 is such as to  correspond to plumes rising 
in the lower layer and falling in the upper towards the diffusive interface a t  z = 1. 
The solution in figure l ( a )  has a type A interface; those in figures l ( b ,  c )  have 
interfaces of type B. 

The structure of the fields in figure l ( a )  is reminiscent of those encountered in 
ordinary thermal convection (see the single-mode solutions in figure 1 of II), although 
of course here there is an overall decrease of density with height due to the stabilizing 
influence of salt. Within each convective layer the vertical velocity amplitude W is 
smooth and has a single maximum. Away from the boundary layers most of the heat 
is transported by convection; p i s  nearly constant and WO z N (cf. (3.14)). Therefore 
the temperature fluctuation 0 varies inversely with W ,  and significant deviations 
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from this behaviour occur only in the boundary layers where thermal conduction is 
important and where 0 turns over and then drops to zero. The mean temperature 
gradient becomes comparable to the convective heat flux W 0  where 0 peaks, and 
it reaches its maximum magnitude N a t  z = 0, 1 and 2 where both W and 0 vanish. 

The salinity fields ~9 and Q, in figure 1 ( a )  are similar to T and 0, though the 
boundary layers in salinity are narrower by a factor of 10; this is a property of all 
type A interfaces. The boundary-layer thicknesses are simply proportional to the 
square roots of the appropriate diffusivities. The salt flux M is dominated by the 
convective term WQ, in the interior, and by the mean salinity gradient y in the 
boundary layers. 

The interfaces centred at z = 1 in figures 1 (b ,  c )  are typical examples of type B. They 
are rather broader than their type A counterpart. It is evident from the positions 
of the peaks in 0 and CD that  the ratio of the thermal and haline boundary-layer 
thickness is no longer as great as 10; in the example illustrated with h = 6 this ratio 
is 3.7, and in the solution with h = 14 i t  is only 1.7. The vertical velocity amplitude 
W is small throughout the interface, and close inspection of the solution at  h = 14 
reveals two weak countercells within the central region of the interface. The @-field 
still varies almost linearly in this region, but Q, has developed an additional pair of 
peaks. It should be remarked that, very near to  z = 1, W is proportional to z ,  as is 
clearly the case in interfaces of type A (see figure l a ) .  Thus the horizontal stress 
vanishes at z = 1 in all steady solutions. 

Type B interfaces are found only when the stability parameter h is sufficiently large 
(see figure 2). Significant stabilization of the flow can then occur within the haline 
boundary layer, thereby reducing the magnitude of the vertical velocity to quite 
small values. I n  the thermal boundary layers, W a t  first increases approximately 
quadratically with distance ; such a variation is rather like that of thermal convection 
with rigid boundary conditions (3.19) on the velocity. Although the midplane of the 
diffusive interface is actually stress-free, the effects of the strong negative buoyancy 
in the thin haline boundary layer are such as to make the velocity appear to be 
experiencing rigid conditions. 

In  figures 1 (b ,  e )  i t  is evident that  only the central interface is of type B. Thus if 
these solutions are considered to be part of a multilayer configuration, the interfaces 
would alternate between type A and type B. Another possibility might be that all 
the interfaces are of type B, but we have found such solutions only when C = 0. The 
solutions with C = 0 are superficially similar to  those with hexagonal planforms, the 
principal difference being that each convecting layer is symmetrical about its 
midplane. 

Finally we remark that all the double-layer steady solutions subject to free 
boundary conditions that we obtained as final states of a time evolution had 
reflectional symmetry about z = 1, whatever the initial conditions. We used this 
result when we subsequently computed steady solutions directly, by computing only 
a single convection layer with stress-free boundary conditions at z = 0 and z = 1. 
Because of the further symmetry possessed by solutions with C = 0, one need 
compute only half a layer in this case. 

4.2. Domains of existence of steady solutions 

The domains within which solutions of types A and B are found are shown in figure 2. 
Solutions of one type or other can be found a t  all values of h and a within the 
confines of the figure. The boundaries vary with R and C, though the main qualitative 
features of the diagram appear to be preserved. Type A solutions exist from h = 0 
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A 

FIGURE 2. Domains of existence in (a ,  A )  of hexagon-solution types subject to free boundary 
conditions when R = 1.25 x lo5, u = 6 8  and r = Steady solutions of type A exist only to 
the left of the continuous line, solutions of type B to the right. To the left of the doedashed 
line, where A < 1 ,  the density stratification is unstable; a steady double-layer solution, if perturbed, 
reverts to a single convection cell extending over the entire layer. In the shaded domain the solutions 
are unstable to  migration and eventual dissolution of the central interface. Above the dashed line 
the solutions are metastable. The dotted line locates the wavenumber a, a t  which the buoyancy 
flux (1 -x) N is maximized a t  constant R and A. The positions of the three solutions illustrated 
in figure 1 are marked with squares. About 200 numerical solutions were used to determine the 
domains shown here, with the densest sampling near the transition lines. The corresponding 
diagram for rolls is similar. 

to a value of A that decreases as a increases, though when h < 1 they are certainly 
unstable. Solutions with interfaces of type B exist at higher values of A. The domains 
appear not to  overlap when free boundary conditions are applied, though there is some 
overlap for solutions subject to rigid boundary conditions. 

Note that the abscissa in figure 2 is A and not A,. Provided that A is well above 
the value a t  which the transition between the two types of solution occurs, A, for 
the type B interface is close to A, whereas for the corresponding type A interface it 
is of course considerably smaller. This is the case not only for the hexagons 
represented in figure 2, but also for rolls (cf. figure 4). An immediate consequence of 
this property is that when both types of interface coexist (as in the h = 6 and 14 
solutions of figure l ) ,  the condition that they must each transport the same fluxes 
implies that the type B interface always accommodates most of the variation in 

and T. However, when the interfaces are both of type A, both values of A, are 
identical and equal to A. Interfaces of type B arise a t  the midplanes ( z  = 1) of our 
two-layer systems rather than a t  the boundaries merely as a result of our initial 
conditions. For brevity, in the discussion that follows we shall designate our entire 
solutions as being simply of type A or B according to the character of the central 
interface. 

In  addition to the steady solutions described above, two other categories of 
solutions exist. The shaded area in figure 2 is the domain of time-dependent solutions 
in which the central interface migrates either upwards or downwards. During the 
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evolution one of the convection layers expands a t  the expense of the other, the final 
state being one in which a single layer of convection fills the entire region of fluid. 
Although steady solutions do exist in the shaded domain in figure 2, our limited 
stability studies showed that they are unstable to finite-amplitude disturbances. 
Initially the migration velocity increases exponentially, with an e-folding time that 
is comparable to the thermal diffusion time d 2 / K  and which increases with A. By the 
time the interface has moved some 3 M O  7’ of the depth of a single convective layer 
its velocity is comparable to the characteristic haline diffusion velocity K,/d. Its  
velocity then increases much more rapidly, and the interface disintegrates as the 
larger convective layer consumes the smaller. 

The other category of solutions lies to the upper right of the dashed line in figure 2. 
As both a and h are increased, the type B interface assumes an increasingly 
complicated structure, much like the h = 14 solution shown in figure 1 ( c ) .  Above the 
dashed transition line we find that such solutions are metastable: perturbing the 
steady solutions can lead to a broadening of the middle region accompanied by a 
growth in the amplitudes of the two embedded countercells; alternatively, the 
solution there may evolve to a state with several weak countercells. Close to the 
transition line the time evolution terminates in one of several steady solutions, which 
differ mainly in the structures of their interfaces. At higher a and h the central region 
can continue to expand slowly until i t  fills the entire space, thereby suppressing the 
convection entirely in the adjacent layers. Eventually a new multilayer structure with 
less vigorous convection replaces the former ; we have not studied these states in much 
detail. Outside the time-dependent and metastable regions, the steady solutions are 
stable to small-amplitude perturbations provided that h > 1. 

4.3. Buoyancy-8ux ratios 

The dependence of x on A is shown in figures 3 and 4. The linear branches through 
the origin correspond to  type A solutions; they extend uniformly from the unstably 
stratified domain of ordinary thermal convection ( A  = 0) to the gravitationally stable 
domain of double-diffusive flow. The nearly horizontal branches a t  high h correspond 
to solutions of type B. 

At first sight the transition in figure 3 from type A to type B suggests a bifurcation 
of solutions, judging from the behaviour of the a = 3 solutions in the vicinity of 
h = 5.35. We have not been able to  establish whether this is actually the case, but 
we suspect not because we have failed to find an extension of an A-branch beyond 
the transition. We have resolved the transition sufficiently to demonstrate that it is 
smooth, and is not a cusp catastrophe as one might expect from its appearance in 
figure 3. The smoothness of the transition is more evident in figure 4. This is a result 
of increasing R, rather than decreasing C. 

Type B solutions yield a buoyancy flux ratio whose slow variation with A bears 
some resemblance to the laboratory data. However, the value of x does depend on 
the wavenumber, and it is not clear which a to choose. Although all limited modal 
representations are subject to  this difficulty, we found in our single-mode analysis 
of thermal convection in I1 that the solutions that do best in comparisons with 
laboratory results are close to those that maximize the heat transport. A close 
analogue in the thermohaline problem is the buoyancy flux, which is proportional 
to (1-x)N. Thus we have varied the wavenumber a (at fixed R and A )  in order 
to locate the value, say a,, a t  which (1 - x ) N  is maximized. This is our ‘preferred’ 
solution, though the choice is somewhat arbitrary. In  the type B solution the value 
of a, usually lies close to that which maximizes the heat flux N .  The resulting flux 
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FIGURE 3. Buoyancy-flux ratios x for double-layer hexagons subject to free boundary conditions ; 
R = 1.25 x lo5, u = 6 8  and 7 = The continuous lines represent solutions a t  the fixed 
wavenumbers indicated. The dashed line denotes x,: its value increases slowly with A ,  from 0.22 
at h = 4 (where a, = 68)  to 0 3 2  a t  h = 14 (a, = 3.7). The associated Nusselt number N ,  decreases 
with h in this interval from 5 1  to 3.4; the maximum Nusselt number, at h = 0, is 107. The surveys 
are too sparse to determine 2, when h < 4. The almost-straight line passing through the origin 
results from solutions of type A ;  here h is also equal to the effective stability parameter he 
characterizing each diffusive layer. The horizontal branches correspond to solutions with a central 
interface of type B ; for these A, for the central interface is close to A, and that for the other boundary 
layers is where the type A branch yields the same value of x. The squares locate the solutions 
illustrated in figure 1. 

ratio xm = X(a,) is indicated by the dashed curves in figures 3 and 4. It is greater 
than the constant experimental value of 0.15 reported by Turner (1965) and Crapper 
(1973, 1975), though close to that reported by Marmorino & Caldwell (1976) a t  their 
lower Rayleigh numbers. 

Turning to sequences of rolls a t  other values of R, we find that xrn increases with 
increasing R. For instance, xrn = 0.30, 0 3 3  and 0.37 when R = lo5, lo7 and lo9 and 
h = 10. Limited experiments with hexagons suggest a similar tendency. Thus we are 
left with a severe discrepancy: the evidence from the experiments of Marmorino & 
Caldwell (1976) is that  x decreases with increasing R, whereas our solutions behave 
conversely. 

4.4. The heat $ux for steady convection 
I n  figure 5 is shown how the heat flux in the preferred type B solutions varies with 
h for several values of R. The heat flux is measured in units of its maximum value, 
which is achieved when salt is absent ( A  = 0). For comparison the dashed curve 
denotes the heat flux F in the experiments of Marmorino & Caldwell (1976), 
normalized in the manner of Turner (1965) by a presumed value of F a t  h = 0. It 
is not really clear whether the variation of F with h is really the universal function 
represented by this curve (cf. Huppert 1971), since the range of R in the laboratory 
experiments is not wide. Like the experimental values our numerical results are 
insensitive to h a t  large A, though the values of the normalized heat fluxes are in 
disaccord. They also vary slowly with R. 
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5 .  Asymptotic solutions for large R 
The case of greatest interest to oceanography and astrophysics is that  of very large 

R. Here we develop matched asymptotic expansions of the solutions in this limit. The 
main objective is to calculate the flux ratio x. The result is that  x = h7i when h is 
small, and that x is insensitive to h when A is sufficiently large. I n  the latter case 
x is given by (5.53) and (5.50), and is plotted in figure 5 for three values of R. 

Solutions of types A and B have quite different structures, as can be seen from the 
numerical results. The interior equations are the only common feature, though it  will 
be necessary to develop their solutions separately for the two cases. The type B 
solutions exist only when 7 is small. 

I n  the interior we introduce the scalings 

I I 1 I I 1 1 I I I  I I 

- - 

- - 

W =  W o Y ,  0 = N W i ' F ,  @ =pNW;'G,  p = NB,  y = pNT, (5.1) 

where W, = (NRa'):, (5.2) 
which islarge. I n  termsof the scaled variables, the modal equations (3.9)-(3.1 l ) ,  (3.14) 
and (3.15) become 

( D z - a z ) z Y  = F-hpG,  (5.3)  
W,*(D'-LZ~)  F = -BY,  

7 W;' (0' - a' ) G  = -IT, 
B + Y F =  1 ,  

r + 7 - l Y G  = 1 ,  
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FIGURE 5 .  Dependence of the Nusselt number N ,  = N(a,), measured in units of its value a t  h = 0, 
on the stability parameter A. The continuous lines denote rolls a t  the Rayleigh numbers indicated 
and the dashed line hexagons for cr = 6.8. All solutions are of type B, are subject to free 
boundary conditions and have 7 = lo-*. For comparison is included the function 
F = 0101 exp(4.6exp [-054(h- l)]}, which, according to Marmorino & Caldwell (1976), is a good 
fit to their experimental data. The dotted curves are asymptotic results, obtained from the analysis 
of 55. Numerical solution a t  a = a, are not available for h in the range in which the transition 
between the type A and type B interfaces occurs, but it is apparent from figure 4 that  as h decreases 
N ,  must first rise rapidly near h = 3 to about 0.85, the value for type A solutions, and then it 
increases gradually to  unity as h decreases to zero. 

which must be solved subject to the constraints 

f l  

(5.9) 

and appropriate boundary conditions. It will become evident that  the boundary 
conditions that must be applied depend on A. 

The solutions are considered to  be expanded in an asymptotic sequence as follows: 

Y = Yo+ W;2Y1+. . . .  (5.10) 

In  leading order it follows from (5.4) and (5.5) that B, = 0, To = 0;  whence F, = Y;l 
and Go = 7Yi1. The momentum equation (5.3) then becomes 

Y',(D2-a2)2Y, = 1 -x = K.  (5.11) 

It should be observed that the scaling '?, = K-~Y,  reduces the interior equation to 
that obtained in the absence of the salinity field. 
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5.1. Type A solutions: A small 

In  this case the stabilizing effect of the salinity field is insufficient to alter the 
functional form of the velocity. It merely reduces the amplitude. The problem of 
determining the velocity field is then analogous to  that of BBnard convection with 
free boundaries, and has been discussed by Howard (1965). Equation (5.11) must be 
solved subject to the conditions Yo = 0, D2Yo = 0 at z = 0 , l .  Near z = 0 the solution 

(5.12) 
has the form 

where A is a constant that  is fixed by the condition that the solution also satisfies 
the boundary conditions a t  z = 1.  Howard (1965) gives A a  = 0836 at the wave- 
number a, that maximizes the heat flux; Van der Borght, Murphy & Spiegel (1972) 
and Gough et al. ( 1 9 7 5 ~ )  give a very approximate expression for A for any a in 
the vicinity of a,. 

5.1.1. The boundary layer. The boundary-layer equations are obtained by setting 
z = €7, where E is the boundary-layer thickness, and by introducing the new 
dependent variables $(7), f ( 7 )  and g(7) defined by 

= &+A+, F = e-'K-iA-lf, G = r&-'K-tA-'g. (5.13) 

1 1 
Yo = Ki Az+ -z31nz+... , [ 6A 

Equations (5.3)-(5.7) then become 

Yi" = 0 ( € 2 ) ,  (5.14) 

f "  ,-w2 o~ 4 KA2B$+O(s2), (5.15) 

9" = - W ~ E ' K A ~ T - ~ ~ $ + O ( E ~ ) ,  (5.16) 

B+$f = 1 ,  (5.17) 

r + $ g  = 1 ,  (5.18) 

where a prime denotes differentiation of a function with respect to its argument. It 
is evident that  one must set w; €4KA2 = 1 .  (5.19) 

The boundary conditions at 7 = 0 are $ = 0, $" = 0, f = 0 and g = 0. As 7 --f co the 
solutions must match the interior solution which, expressed in boundary-layer 
variables to leading order in E ,  is 

df -7 ,  f -?I-', 9 - 7 - l .  (5.20) 

The equations for $ and f are precisely those encountered in the absence of salinity 
and have solutions, to leading order in e :  

+ = %  (5.21) 

(5.22) 

where Ii  and Ki are modified Bessel functions of the first and second kinds. The 
solution for g may now be obtained immediately by noticing that the scaling 7 = 745, 
g = r-ih transforms the problem into that which determined f. Thus 

g(7)  = r-:f(r-:y). (5.23) 
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5.1.2. The heat and salinity Jluzes. The fluxes N and p N  are determined from the 
constants (5.8) and (5.9). With the help of (5.6), (5.8) may be written 

(5.24) 

The contribution to  the integral from the interior is O( W i 2 ) ,  which is small compared 
with N-' : the boundary-layer contribution is 

2e jam (1 - $j) dy = 2ek, (5 .25)  

and k = 2-4[r($)l2 = 1-06, as was found by Howard (1965). Here r is the gamma 
function. The factor 2 arises because there are two boundary layers in the domain, 
or two sides to the boundary layer in the case of a full diffusive interface. Thus 
N N 1/2ek ,  which yields, with the help of (5 .2)  and (5.19), 

The constraint (5.9) can be treated similarly, giving 

(5.26) 

(5 .27 )  

Thus p - 71, and the buoyancy-flux ratio is 

x = hpr N hd as R+ CO. 

This result can be obtained also for C + 0, and i t  agrees with numerical results such 
as those depicted in figures 3 and 4 when h is small. 

5.2. Type B solutions 

Solutions of this class occur when r is small enough to produce a thin haline boundary 
layer within the thermal boundary layer, and h is large enough that significant 
stabilization of the flow occurs within the haline boundary layer. I n  solutions of type 
A the haline boundary-layer thickness is rf times that of the thermal boundary layer. 
According to  the numerical results, typified by the hexagonal solutions in figure 1, 
the haline boundary layer expands as h increases (in the domain of the type B 
solutions). I n  this section an asymptotic solution will be sought in which the haline 
boundary layer is still thin compared with the thermal layer. Thus we must expect 
that the solution might cease to be valid if h assumes sufficiently high values. Perusal 
of the numerical results reveals that, although W varies linearly with z very close to 
the boundaries, its dependence on z is quadratic throughout most of the thermal 
boundary layer. Thus the haline boundary layer is a region where the velocity is 
greatly reduced, and on the thermal lengthscale or greater it appears as a rigid 
boundary. 

Guided by these remarks we seek the solution of the interior equation (5.11) 
satisfying Yo = 0, DY, = 0 at z = 0, 1. This is essentially the problem considered by 
Stewartson (1966) in a discussion of thermal convection between rigid boundaries. 
We recall that, whereas in the free-boundary case N is maximized with respect to  a 
when a = O( l ) ,  for thermal convection between rigid boundaries N is maximized when 
a = O(Ra). Thus we allow the possibility that a be large, which produces boundary 
layers in the interior solution of thickness a-l. The analysis will be valid when a is 
less than or of the order of the maximizing value, and then a-l is greater than the 
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thermal boundary-layer thickness. Except in the boundary layers the interior 
solution is asymptotically constant with Y,, - O K - : ,  B, - a6KP1 and rl - T W K - ~ ,  
and as Stewartson has shown, has the property 

Y,, - Kb2 (Inl): as az -+ 0. 
a2 

(5.28) 

5.2.1. The thermal boundary layer. The analysis is analogous to  Stewartson’s 
discussion of thermal convection. Setting z = €7, where c is the thermal boundary- 

(5.29) 
layer thickness defined by 1 

€6 1n - = K-1 W-2 
0 ,  a€ 

and introducing new dependent variables according to 

the boundary-layer equations, to leading order in powers of 6, become 

1 -l 
@”- K-I (ln;) c f - x g )  = 0, (5.31) 

f”+$(l-$f) = 0, (5.32) 

g”+7-2$(1-$g) = 0. (5.33) 

In  anticipation of the haline boundary layer, these equations are to be solved subject 
to the conditions that $ = 0, $’ = 0, f = 0 a t  7 = 0, and that the solutions match 
the interior equation as 7 --f 00, namely 

$ - v 2 ,  q 5 - ~ 7 - ~ ,  g - v - 2  as 7-’00. (5.34) 

The balance g$ - 1 is maintained throughout this boundary layer. The thermal part 
of the problem is just that  studied by Stewartson: 

$ = T 2 ;  (5.35) 

f can be expressed as integrals of modified Bessel functions, and has the property 

where 
(5.36) 

Recalling that r is small, the salinity fluctuation can be expanded in powers of r2 to 
give 

g = 7- + 6r27-* + . . . . 
It can be shown that the second term matches the O( W i 2 )  term of the interior solution 
when expressed in thermal boundary-layer variables. 

5.2.2. The haline boundary layer. The scaling in the haline boundary layer depends 
on the matching with the thermal layer. To determine this it is convenient to  
introduce a scaling factor 6 defined in terms of a parameter a ,  to be specified later, 
according to 

(5.37) 

(5.38) 

I n  terms of a boundary-layer coordinate c = S-’v and the dependent variables u(c), 
v(6) and w( t )  defined by 

$h = r S - l u ,  f = sv, g = 7-‘Sw, (5.39) 
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(5.31)-(5.33) become u'V+a(w-7x-b) = 0, (5.40) 

v" + 7u( 1 - 7uv) = 0, (5.41) 

w"+u(l-uuw) = 0. (5.42) 

The boundary conditions to be satisfied a t  5 = 0 are that u, v, w and u" vanish. To 
leading order in 7 (5.41) is vN = 0, which has the solution v = 2H5 matching the 
asymptotic form (5.36) of the solution in the thermal boundary layer. Provided that 
7x-1 < 1 ,  the buoyancy term in brackets in the momentum equation (5.40) is now 
dominated by the salinity fluctuation and this impedes the flow, whereas in the 
interior i t  is the temperature fluctuation that is more important. Equations (5.40) and 
(5.42) may be combined to give 

uvi - u2uiv - au x 0. (5.43) 

We have not solved this equation, but we note that it admits solutions of the form 

u - a452 (ln [I + C, +$(In In In C+ C, In g+. . .] as 5 -, 00, (5.44) 

where C, and C, are constants. The form of the salinity fluctuation can then be 
obtained from (5.40) : 

w N a-t[-z(ln fJ-4 [I  - C, -+(In 51-l In In [+ . . .] 
+6a-&8(ln5)-t [l - C , - ~ ( l n ~ ) - l l n l n [ + .  . .] as 5 + 00. (5.45) 

Expressed in thermal boundary-layer variables (5.44) becomes 

@ N ( *In ('/') >: y2 [ 1 + C, .$( I.f)-' In In;+ (In:)-' (C, +gin 7) + . . ., (5.46) 
Kln (llae) 

whose leading term matches (5.35) provided that 

1 1 
ln- = Kx-l ln-, 

6 a€ 
(5.47) 

which, together with (5.38), determines a. The leading terms of the expansion of (5.45) 
in thermal boundary-layer variables then match (5.37). Moreover, i t  can be shown 
that the condition (5.47), together with the choices 

and C, = 0, enables the other terms in (5.46) to be matched to terms in the 
thermal boundary-layer solution generated by considering higher orders in the 
asymptotic expansions of + and Y .  

5.2.3. The heat and salinity Jluxes. As before, the Nusselt number is determined 
from the constraint (5.8). Thus 

- W t 2  asK-l + 2ek1, (5.48) 

where (5.49) 

(Stewartson 1966). The contributions from the a-l boundary layers and the haline 
boundary layers are small compared with the terms retained. Substituting for W, from 

4 FLM 125 
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(5.2) then gives N-l(l -a4/KR) - 2 ~ k , ,  which yields, after eliminating E using (5.29) 
and (5.2), 

N - (1 - *)'{=ln KR 5(2k,)6 [ KRaP3 (1 - &)I}' as R co. (5.50) 

Similarly the constraint (5.9) gives 

- W i 2  72a2K-1 + 2~Sk,, (5.51) 

where 
k, = jom(l--uw)d< (5.52) 

is a constant of order unity. The O(ET,) term is the contribution from the thermal 
boundary layer ; i t  is small compared with the contribution from the haline boundary 
layer, though this must be confirmed a posteriori. The contribution from the interior 
is also small for a in the range considered here. Thus p-lN-l - 2~Sk,; i t  can now 
be divided into (5.48) to obtain an expression for ,u from which S can be eliminated 
using (5.47) and the relation between E and N .  There results a transcendental 

(5.53) 

with N given by (5.50). 
It is not easy to  solve (5.43) numerically subject to  the requisite boundary and 

matching conditions, because the solutions are very sensitive to  conditions a t  large 
6. Therefore, since the solution of (5.53) for x depends only weakly on the constant 
E, ,  we have not determined k,. Nevertheless, we find that setting k, x 2.5 yields values 
of x within about 10 % of the numerical values for R in the range [lo', lo9] over a 
wide range of a. The limit (5.50) can overestimate the numerical results by about 50 yo, 
though it  should be borne in mind that since the asymptotic analysis requires In R 
to be large the numerical results can hardly be expected to be in the asymptotic 
regime. In  contrast, a t  R = lo9 Stewartson's (1966) formula for N of BBnard con- 
vection, which is simply (5.50) with K = 1, overestimates numerical solutions by 
only about 20%; a t  R = 1020 and a = 1 ,  by 5%.  

The value of x implied by (5.53) and (5.50) exhibits the qualitative features of the 
numerical results: it decreases with increasing a, and increases only gradually with 
increasing h and with 7 .  Moreover, i t  also increases with R, and approaches unity 
as R + 00. This behaviour is illustrated in figures 4 and 5, where the asymptotic 
solutions are compared with the numerical results: i t  is evident from (5.50) that the 
normalized heat fluxes plotted in figure 5 reflect the value of x. The wavenumber 
a, - (&KR)e a t  which the buoyancy flux K N  is maximized decreases slowly with A. 
The Nusselt number N is maximized a t  the same value of a ,  to  this order of accuracy. 
Equations (5.53) and (5.50) can be solved for x. When a x a, the result is 

K = l - ~ - 2 0 1 n  2 (lnR)-l as R+co (3 (5.54) 

It then follows from (5.47) that  S - h7, which justifies the neglect of the term O(s7,) 
in (5.51). It should be noted also that the proviso 7x-1 4 1 made in deriving (5.43) 
is also satisfied. The approach x -+ 1 is slow: for example when R = 1020 and 
a = 5 x lo4, the value at about which KN is maximized, (5.50) and (5.53) give 
x % 058 .  Even this value of R is not large enough for (5.54) to be applicable. 
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5.3. The buoyancy-Jtux ratio 
When h is small, salinity is of little consequence. A haline boundary layer is set up 
within the interface, but i t  is too weak to divert the flow. The result of transporting 
salt through the layer is simply to reduce buoyancy by a factor 1 -x, and hence to  
modify the velocity field to  that encountered in ordinary thermal convection a t  a 
Rayleigh number (1 - x) R. The structures of the haline and thermal boundary layers 
are similar, save that the haline layer is thinner by a factor 74. Consequently the 
salinity flux y N ,  measured in units of the diffusive value, is d N ,  where N is the 
Nusselt number. The flux ratio x = hy7 is thus rib, which increases linearly with A. 
This is the type A solution. 

A solution of this form cannot persist to arbitrarily large h since the flow would 
be entirely suppressed once x attained unity. Indeed, a t  values of h considerably below 
7-4, penetration of the flow into the haline boundary layer is impeded by the stable 
stratification ; even horizontal motion within this boundary layer is inhibited because 
the fluid would eventually be forced away from the interface and become negatively 
buoyant. Thus, to the fluid outside, the haline boundary layer appears as a rigid 
boundary, even though no no-slip condition is imposed within the interface. This is 
the type B solution. I n  this case too the flow in the interior resembles that of ordinary 
thermal convection at a Rayleigh number of (1 - x) R, but with rigid boundaries. Thus, 
provided that x is not too close to unity, the heat flux is insensitive to A. At the edge 
of the haline boundary layer diffusion is balanced by advection from or into the main 
body of the adjacent convecting layer. The velocity amplitude in the interior flow, 
which like N varies only weakly with h a t  constant R, thus fixes the salinity gradient 
in the boundary layer and hence the salinity flux. Therefore y N  is approximately 
proportional to A - l ,  and x = is independent of A. A further consequence of this 
balance is that  the haline boundary-layer thickness increases almost linearly with A. 
Clearly if h were very large the asymptotic analysis in $5.2 would no longer be valid, 
since i t  assumes the haline boundary layer to  remain thin compared with the thermal 
layer. Nevertheless, the argument here suggests that  even then the buoyancy-flux 
ratio would remain insensitive to the stability parameter. 

The transition between the two kinds of flow as A is increased produces a sharp 
decline in the Nusselt number, essentially from free-boundary to  rigid-boundary 
values for ordinary convection a t  the appropriate values (1 - x) R of the Rayleigh 
number. This is evident in plots of N against h at fixed R and a, which we have not 
displayed here. This feature is seen too in the experimental data, but quantitative 
agreement between theory and experiment has not been achieved. 

6. Discussion 
The principal result of this investigation is that  the single-mode representation of 

a diffusive thermohaline interface reproduces the near constancy of the buoyancy-flux 
ratio x as the density ratio h is varied. This occurs only when r is small and h is 
sufficiently large, and is a common feature of all our solutions with wavenumbers 
comparable to that which maximizes the buoyancy flux. The interface, which we have 
labelled as being of type B, may be regarded as a pair of nested diffusive boundary 
layers: the ratio of the thicknesses of the inner haline layer and the thermal layer 
increases linearly with A ,  and the structure of the haline layer becomes more 
complicated as A increases, developing weak viscously driven countercells. 

The type B boundary-layer structure bears a superficial resemblance to that 
4-2 
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assumed in the recent kinematical argument presented by Linden & Shirtcliffe (1978). 
These authors suppose that a permanent diffusive layer is embedded in a broader 
boundary layer which is intermittently ablated, in much the same way that Howard 
(1966) proposed in his theory of thermal convection at high Rayleigh numbers. Heat 
and salt perturbations diffuse from the inner layer until the stratification becomes 
unstable. Then a burst of mixing is presumed to ensue, which homogenizes the 
convective layers. At the crux of the argument is the assumption that the fluid motion 
extends only to the level a t  which the density is equal to that in the middle of the 
convective layer. At this level the contributions to  the density anomalies from heat 
and salt are equal in magnitude. The ratio of the quantities of heat and salt that  have 
diffused beyond that level into the region that suffers ablation is therefore proportional 
to only the ratio of the square roots of the corresponding diffusivities. It follows 
immediately that x = 74, irrespective of R and A. Our attempt a t  modelling the 
dynamics has predicted that the flow actually penetrates into the stably stratified 
layer further than Linden & Shirtcliffe assume, by an  amount which increases with 
increasing R. We find, therefore, that  the salt flux is preferentially enhanced, and 
that x increases slowly with R. 

Another consequence of Linden & Shirtcliffe’s assumptions is that the heat and salt 
fluxes contain the factor 1 -74h, as do our type A solutions a t  low A. Presumably this 
results from the assumption that the ablation process is similar for salt and heat. Thus 
the model predicts that  the fluxes vanish when h exceeds 7-4, just as would have been 
the case for our type A solutions had the structure of the velocity field not changed 
to that of type B as h increased. Thus although Linden & Shirtcliffe have succeeded 
in constructing a flux ratio that appears to  agree with some of the experiments, their 
model is unable to explain why convection is sustained at the higher values of the 
stability parameter under which experiments have been performed. 

The model presented in this paper is incomplete too, particularly because the 
single-mode representation contains the undetermined wavenumber a. In  the case of 
thermal convection between rigid boundaries, the experimental Nusselt numbers can 
be reproduced by the single-mode mean-field approximation with a value of a similar 
to though somewhat different from the maximizing value (cf. 11). We have been 
tempted to make such a choice in this study, though whether it is preferable to think 
in terms of the wavenumber a, that  maximizes the buoyancy flux or that  which 
maximizes the Nusselt number is unclear. In  any case, when R is large the single-mode 
representation discussed in this paper predicts that the two are nearly equal. 
However, if one adopts such a choice, the predicted dependence of the buoyancy-flux 
ratio x on R disagrees with experiment: Marmorino & Caldwell (1976) found that x 
appears to  decrease with R, whereas the theory implies that  i t  increases and 
approaches unity as R tends to infinity, a t  least when C = 0. 

As in I, our motivation for this study was the desire to find a tractable model that 
can be applied to natural flows, where the values of R, CT, and possibly 7, are at present 
inaccessible to either controlled experiment or direct numerical integration of the 
equations of motion. Aside from the obvious applications to oceanography, diffusive 
interfaces may play an important role in determining the transport of helium and 
other products of nuclear reactions from the cores of evolved stars. If layering takes 
place on a small scale a t  the edges of stellar cores, the Boussinesq approximation 
would be applicable and one would not be faced with the Complexities of compres- 
sibility normally encountered in stellar convection zones. One might then have some 
confidence in a theory tested by laboratory experiment and extrapolated to conditions 
relevant to  stars. Experiments by Turner (1965) and Shirtcliffe (1973) (see also Turner 
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1973) have suggested that x = r i .  This would be a particularly attractive result, if 
verified, because it is independent of R, and hence of the detailed structure of the 
environment. Though Marmorino & Caldwell’s recent experiments have revealed a 
Rayleigh-number dependence, the limit x - ri as R + 00 is not inconsistent with their 
results. However, this result has yet no theoretical backing, and the possibilities either 
that  x + 0 as R + a3 or that x tends to a limit considerably in excess of 76 when r 
is extremely small are not ruled out by experiment. It is essential to understand what 
controls x at very high Rayleigh numbers (and low Prandtl numbers) before the 
interior of evolved stars can be modelled, and further experiments a t  higher R would 
help considerably. 

Whatever the behaviour of x as R + co, i t  is important to know whether i t  depends 
on the Prandtl number (T. I n  thermal convection i t  is known that N is insensitive 
to B when (T 1, but there is evidence that N is reduced significantly when (T + 1 
(Spiegel 1962, 1971). It is not unlikely that the salinity and heat fluxes scale 
differently with Prandtl number, so x might be substantially different a t  the very 
low Prandtl numbers encountered in stars. Though the single-mode equations with 
C + 0 do contain (T, in view of their failure to reproduce Marmorino & Caldwell’s 
results we have not attempted to determine the Prandtl-number dependence of the 
type B solutions. 

The observed Rayleigh-number dependence of x might be reproduced by a 
single-mode analysis if a were chosen to increase faster than a,. However this does 
not reproduce isothermal, isohaline convective regions on either side of the interface. 
What may be necessary is a multimode analysis, though with a very limited number 
of modes one is still faced with the problem of deciding which wavenumbers to select 
(Toomre, Gough & Spiegel1982). It may be possible to choose them so as to reproduce 
experimental results, but one runs the risk of being left with no confirmable prediction 
with which to test the theory. Nevertheless one does observe in the laboratory 
horizontal scales of motion comparable to both the depth of the convecting layers 
and to the thickness of the interface, so perhaps i t  should not be expected that 
modelling with a single wavenumber could be successful. 

Finally i t  must be realized that the phenomenon may be essentially time 
dependent, and that no number of steady modes can faithfully reproduce even the 
time-averaged structure of the interface. If intermittent ablation is an important 
process, as Linden (1974) has suggested, i t  may be necessary to produce a much more 
elaborate model before one can extrapolate with confidence to convection in natural 
circumstances. 
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